

Hanna Instruments SAS www.hannacolombia.com

Fotómetro Multiparámetro para Torres de Enfriamiento y Calderas con Medidor de pH

HI 83305

Descripción

Descripción

El fotómetro multiparámetro compacto HI83305, se utiliza para su aplicación en torres de refrigeración y calderas, tanto en el laboratorio como en campo. El medidor es uno de los fotómetros más avanzados que se encuentran disponibles en el mercado. Posee un diseño óptico innovador que utiliza un detector referencial y un lente de enfoque, que elimina los errores que ocurren debido a los cambios en la fuente lumínica y por los defectos en la cubeta de vidrio. Este medidor cuenta con 30 métodos programados diferentes que miden 18 parámetros fundamentales sobre la calidad del agua, también ofrece un modo de medición de la absorbancia para verificar el desempeño de la lectura, y una opción para los usuarios que desarrollen una concentración personalizada, la comparen con las curvas de absorbancia. Los parámetros específicos para el fotómetro utilizado en torres de refrigeración y calderas incluyen agentes eliminadores de oxígeno y sílice, los cuales son importantes para el mantenimiento del equipo.

Para ayudarle a ahorrar espacio valioso en el laboratorio, el HI83305 funciona como un medidor de pH profesional y cuenta con una entrada de electrodo de pH/temperatura digital. Ahora se puede usar un solo medidor tanto para las

Hanna Instruments SAS www.hannacolombia.com

mediciones fotométricas, como para el pH.

Sistema óptico innovador

Ofrece un rendimiento incomparable para un fotómetro de sobremesa

Entrada de electrodo de pH digital

Ahorre espacio valioso con un equipo que funciona como fotómetro y medidor de pH de laboratorio

Modo de medición de la absorbancia

Permite verificar el rendimiento mediante los estándares CAL Check

Detalles

El fotómetro HI83305 de sobremesa calcula 18 parámetros fundamentales sobre la calidad del agua utilizando 30 métodos diferentes. Este fotómetro cuenta con un sistema óptico innovador que utiliza LED, filtros de interferencia de banda estrecha, lentes de enfoque, un fotodetector de silicio para medir la absorbancia y un detector referencial que mantiene una fuente lumínica constante, lo que garantiza que, en cada ocasión, se realicen lecturas fotométricas precisas y repetibles.

Este equipo se diseñó especialmente para utilizarlo en torres de refrigeración y calderas, el HI83305 mantiene de manera integral, las condiciones de agua precisas para los sistemas. Algunos problemas, como la corrosión, deposición y crecimiento microbiano pueden ocurrir si no se mantienen parámetros fundamentales como los eliminadores de oxígeno y sílice. Los eliminadores de oxígeno se adicionan para suprimir el oxígeno residual que se encuentra disuelto en el agua que alimenta la caldera, esta puede corroer una planta generadora de vapor. Es importante que los niveles de eliminadores de oxígeno se controlen de forma rutinaria, para así prevenir la corrosión y asegurar que el equipo funcione de forma eficiente. El mantenimiento del agua de la caldera se debe realizar para prevenir o controlar la formación de depósitos, como ocurre con la sílice. La contaminación por sílice puede disminuir la eficiencia del sistema y aumentar la necesidad de efectuar mantenimiento del equipo debido al escalamiento.

El equipo posee una entrada para un electrodo de pH digital, que permite al usuario medir el pH mediante un electrodo de vidrio convencional. El electrodo de pH digital incorpora un microchip dentro de la sonda, en el cual se guarda toda la información de calibración. Mantener almacenada esta información, permite la sustitución en caliente de los electrodos de pH sin necesidad de recalibrar. Todas las mediciones de pH con variaciones de temperatura, se estabilizan de forma automática gracias a un termistor que se ubica en la punta de un bulbo sensor, el cual ayuda a que la medición de temperatura sea rápida y precisa.

El HI83305 ofrece un modo de medición de la absorbancia que permite utilizar los criterios CAL Check para validar el rendimiento del sistema. En este modo, el usuario puede seleccionar 1 de las 5 longitudes de onda lumínicas (420 nm, 466 nm, 525 nm, 575 nm y 610 nm), medirla, marcar una concentración personalizada y compararla con el modo de absorbancia. Esto es de utilidad para aquellos usuarios que tienen su propio método químico y para que los educadores enseñen el concepto de absorbancia usando la ley de Beer-Lambert.

Hanna Instruments SAS www.hannacolombia.com

En el equipo se proporcionan 2 puertos USB que se utilizan para transferir datos a una unidad USB o a un computador, y también se usan como entrada de una fuente de energía para el medidor. Asimismo, para una mayor comodidad y portabilidad, el medidor funciona con una batería interna de polímero de litio de 3.7 VDC recargable.

CARACTERÍSTICAS Y BENEFICIOS

- Pantalla LCD gráfica de 128 x 64 píxeles con retroiluminación
 - o La pantalla gráfica con retroiluminación permite una fácil visualización en condiciones de poca luz
 - La pantalla LCD de 128 x 64 píxeles, presenta una interfaz de usuario sencilla con teclado virtual y ayuda en pantalla, para brindar una guía al usuario sobre el uso del medidor
- Temporizador de reacción incorporado para realizar mediciones fotométricas
 - o La medición se lleva a cabo una vez finaliza el temporizador
 - Para una mayor continuidad en las mediciones, se garantiza que, gracias al temporizador, todas las lecturas se realicen en los intervalos de reacción apropiados, independientemente del usuario
- Modo de la absorbancia
 - Este equipo cuenta con las cubetas CAL Check exclusivas de Hanna que validan la fuente lumínica y el detector
 - Estas cubetas permiten que el usuario marque la concentración o la absorbancia en una longitud de onda específica para usarse con los datos químicos proporcionados por el usuario o para el aprendizaje de los principios de la fotometría
- Unidades de medida
 - En la lectura se muestra la unidad apropiada de medida, junto con la forma química
- Conversión de resultados
 - o Con solo presionar un botón, y de manera automática, el equipo adapta las lecturas a otras formas químicas
- Cubierta de la cubeta
 - Ayuda a evitar que la luz parásita afecte las mediciones
- Entrada del electrodo de pH digital
 - Mide el pH y la temperatura con solo una sonda
 - Utiliza los criterios de las buenas prácticas de laboratorio (GLP) que rastrea la información de calibración, inclusive la fecha, tiempo, búferes utilizados, offset y pendiente para determinar la trazabilidad
 - o El sistema CAL Check de pH alerta al usuario sobre posibles problemas durante el proceso de calibración
 - o Ahorro de espacio gracias a un medidor de pH y fotómetro en un solo equipo
- Registro de datos
 - Puede guardar hasta 1000 lecturas fotométricas y de pH, solo con presionar la tecla LOG. Las lecturas registradas se recuperan fácilmente al pulsar el botón RCL
 - o Se puede utilizar un teclado alfanumérico para introducir la identificación de la muestra y del usuario
- Conectividad
 - Las lecturas registradas se pueden transferir de forma rápida y sencilla a una unidad USB utilizando el puerto USB-A, o trasladarlas a un computador usando el puerto microUSB-B
 - Todos los datos se exportan como un archivo .csv, el cual se puede utilizar con muchos programas de hoja de cálculo
- Indicador del estado de la batería
 - Indica la duración de batería restante
- Mensajes de error
 - Los mensajes de error del fotómetro incluyen: no hay tapa, cero alto y estándar demasiado bajo

Hanna Instruments SAS www.hannacolombia.com

o Los mensajes para calibrar el pH incluyen: limpiar el electrodo, comprobar el búfer y verificar la sonda

FUNCIONES EN PANTALLA

Selección del método

De forma sencilla, los usuarios pueden seleccionar cualquiera de los 60 métodos de medición solo presionando el botón METHOD.

Registro de datos

Se pueden registrar hasta 1000 lecturas de medición con el usuario y la identificación de la muestra, los cuales se puede recuperar para utilizarlos en el futuro.

Modo de medición del pH

Seleccionar el modo de medición del pH permite utilizar el fotómetro como un medidor de pH profesional que incluye muchas características como mediciones con compensación de temperatura, calibración automática en dos puntos y GLP.

Sistema óptico innovador

El equipo HI83300 se diseñó con un sistema óptico innovador que incorpora un divisor de haz, cuya luz se puede utilizar en lecturas de absorbancia y como detector referencial; este último, supervisa la intensidad de la luz y la ajusta cuando ocurren desviaciones debido a la fluctuación de la energía o al calentamiento de los componentes ópticos. Cada pieza desempeña un papel importante al proporcionar un rendimiento sin precedentes para un fotómetro.

Fuente LED de alta eficiencia

Una fuente LED ofrece un rendimiento superior cuando se compara con una lámpara halógena. La LED tiene una eficiencia de iluminación mayor, la cual proporciona una luminosidad superior mientras utiliza menos energía. También produce poco calor, lo que evita que los componentes ópticos y la estabilidad electrónica se vean afectados. La LED se encuentra disponible en una amplia gama de longitudes de onda, ya que, aunque se supone que las lámparas halógenas son de luz blanca (todas las longitudes de onda de la luz visible), en realidad tienen una salida pobre de luz azul/violeta.

Filtros de interferencia de banda estrecha para asegurar la calidad

Hanna Instruments SAS www.hannacolombia.com

El filtro de interferencia de banda estrecha no solo garantiza una mayor precisión de la longitud de onda (+/-1 nm), sino que también es extremadamente eficiente. Los filtros que se utilizan en el equipo permiten que se transmita hasta 95% de LED en comparación con otros filtros que solo son eficientes en un 75%. Esta alta eficiencia garantiza una fuente lumínica más fuerte y brillante. El resultado final es una mayor estabilidad de medición y menor error en la longitud de onda.

Detector referencial para una fuente de iluminación estable

Se utiliza un divisor de haz que forma parte del sistema interno referencial del fotómetro HI83300. El detector referencial equilibra cualquier desviación que pueda ocurrir debido a fluctuaciones de energía o cambios en la temperatura ambiental. Ahora puede confiar en una fuente de iluminación estable entre su medición en blanco (cero) y la medición de las muestras.

Mayor tamaño de la cubeta

La celda de muestreo del HI83305 se ajusta a una cubeta de vidrio redonda con una longitud de trayectoria de 25 mm. Junto con los componentes ópticos avanzados, el tamaño más grande de la cubeta reduce de forma considerable, los errores de rotación que ocurren debido a la marca de referencia de las cubetas. La longitud de trayectoria relativamente larga de la cubeta de muestreo, permite que la luz pase por una mayor parte de la solución de muestra, lo que garantiza mediciones precisas, incluso en muestras de baja absorbancia.

Lente de enfoque para un mayor rendimiento lumínico

La adición de un lente de enfoque al recorrido óptico, permite recolectar toda la luz que sale de la cubeta, y la concentra en el fotodetector de silicio. Este enfoque innovador sobre las mediciones fotométricas, elimina los errores que ocurren por los defectos y rayones que se encuentran en la cubeta de vidrio, lo que suprime la necesidad de indizar la cubeta.

Especificaciones

Especificaciones

Parámetro	Rango	Resolución	Precisión (a 25°C)	Método	Longitud de Onda	Código del Reactivo
Absorbancia	0.000 a 4.000 Abs	0.001 Abs	+/-0.003Abs @ 1.000 Abs			
Aluminio	0.00 a 1.00 mg/L (como Al3+)	0.01 mg/L	±0.04 mg/L ±4% de lectura	Aluminon	525 nm	HI93712-01
Amonio, Rango Bajo	0.00 a 3.00 mg/L (como NH3 -N)	0.01 mg/L	±0.04 mg/L ±4% de lectura	Adaptado de ASTM Manual of Water and Environmental Technology, D1426 Método Nessler.	420 nm	HI93700-01

www.hannacolombia.com

Parámetro	Rango	Resolución	Precisión (a 25°C)	Método	Longitud de Onda	Código del Reactivo
Amonio, Rango Medio	0.00 a 10.00 mg/L (as NH3 - N)	0.01 mg/L	±0.05 mg/L ±5% de lectura	Adaptado de ASTM Manual of Water and Environmental Technology, D1426 Método Nessler.	420 nm	HI93715-01
Amonio, Rango Alto	0.0 a 100.0 mg/L (como NH3 -N)	0.1 mg/L	±0.5 mg/L ±5% de lectura	Adaptado de ASTM Manual of Water and Environmental Technology, D1426 Método Nessler.	420 nm	HI93733-01
Bromo	0.00 a 8.00 mg/L (as Br2)	0.01 mg/L	±0.08 mg/L ±3% de lectura	Adaptado de Standard Methods for the Examination of Water and Wastewater, 18th edition, Método DPD	525 nm	HI93716-01
Dióxido de Cloro	0.00 a 2.00 mg/L (como ClO2)	0.01 mg/L	±0.10 mg/L ±5% de lectura	Adaptado del Método Rojo de Clorofenol	575 nm	HI93738-01
Cloro Libre	0.00 a 5.00 mg/L (como Cl2)	0.01 mg/L	±0.03 mg/L ±3% de lectura	Adaptado de EPA Método recomendado DPD 330.5	525 nm	HI93701-01
Cloro Total	0.00 a 5.00 mg/L (como Cl2)	0.01 mg/L	±0.03 mg/L ±3% de lectura	Adaptado de EPA Método recomendado DPD 330.5	525 nm	HI93711-01
Cromo (VI), Rango Bajo	0 a 300 μg/L (como Cr(VI))	1 μg/L	±10 µg/L ±4% de lectura	Adaptado de ASTM Manual of Water and Environmental Technology, D1687 Método Difenilcarbohidraza	525 nm	HI93749-01
Cromo (VI), Rango Alto	0 a 1000 μg/L (como Cr(VI))	1 μg/L	±5 μg/L ±4% de lectura a 25 °C	Adaptado de ASTM Manual of Water and Environmental Technology, D1687 Método Difenilcarbohidraza	525 nm	HI93723-01
Cobre, Rango Bajo	0.000 a 1.500 mg/L (como Cu)	0.001 mg/L	±0.010 mg/L ±5% de lectura	Adaptado del Método EPA	575 nm	HI95747-01
Cobre, Rango Alto	0.00 a 5.00 mg/L (como Cu)	0.01 mg/L	±0.02 mg/L ±4% de lectura	Adaptado del Método EPA	575 nm	HI93702-01
Hidrazina	0 a 400 μg/L (como N2H4)	1 μg/L	±4% full escala de lectura	Adaptado de ASTM Manual of Water and Environmental Technology, Método D1385, Método p- Dimethylaminobenzaldehyde	466 nm	HI93704-01

www.hannacolombia.com

Parámetro	Rango	Resolución	Precisión (a 25°C)	Método	Longitud de Onda	Código del Reactivo
Hierro, Rango Bajo	0.000 a 1.600 mg/L (como Fe)	0.001 mg/L	±0.010 mg/L ±8% de lectura	Adaptado del Método TPTZ	575 nm	HI93746-01
Hierro, Rango Alto	0.00 a 5.00 mg/L (como Fe)	0.01 mg/L	±0.04 mg/L ±2% de lectura	Adaptado de EPA Método 315B Fenantrolina	525 nm	HI93721-01
Molibdeno	0.0 a 40.0 mg/L (como Mo6+)	0.1 mg/L	±0.3 mg/L ±5% de lectura	Adaptado del Método Ácido Mercaptoacético	420 nm	HI93730-01
Nitrato	0.0 a 30.0 mg/L (como NO3 - N)	0.1 mg/L	±0.5 mg/L ±10% de lectura	Adaptado del Método de Reducción de Cadmio	525 nm	HI93728-01
Nitrito, Rango Bajo	0 a 600 μg/L (como NO2 -N)	1 μg/L	±20 μg/L ±4% de lectura	Adaptado de EPA Método Diazotización 354.1	466 nm	HI93707-01
Nitrito, Rango Alto	0 a 150 mg/L (como NO2-)	1 mg/L	±4 mg/L ±4% de lectura	Adaptado del Método Sulfato Ferroso	575 nm	HI93708-01
Oxígeno Disuelto	0.0 a 10.0 mg/L (como O2)	0.1 mg/L	±0.4 mg/L ±3% de lectura	Adaptado de Standard Methods for the Examination of Water and Wastewater, 18th edition. Método Winkler	420 nm	HI93732-01
Secuestrador de oxígeno (Carbohidrazida)	0.00 a 1.50 mg/L (como Carbohidrazida)	0.01 mg/L	±0.02 mg/L ±3% de lectura	Adaptado del Método de Reducción de Hierro	575 nm	HI96773-01
Secuestrador de oxígeno (Dietilhidroxilamina)(DEHA)	0 a 1000 μg/L (como DEHA)	1 μg/L	±5 μg/L ±5% de lectura	Adaptado del Método de Reducción de Hierro	575 nm	HI96773-01
Secuestrador de oxígeno (Hidroquinona)	0.00 a 2.50 mg/L (como Hidroquinona)	0.01 mg/L	±0.04 mg/L ±3% de lectura	Adaptado del Método de Reducción de Hierro	575 nm	HI96773-01
Secuestrador de oxígenos (Ácido Iso-ascorbico)	0.00 a 4.50 mg/L (como Ácido Iso- ascorbico)	0.01 mg/L	±0.03 mg/L ±3 % de lectura	Adaptado del Método de Reducción de Hierro	575 nm	HI96773-01
рН	6.5 a 8.5 pH	0.1 pH	±0.1 pH	Fotómetro: rojo de fenol	525 nm	HI93710-01
Fosfato, Rango Bajo	0.00 a 2.50 mg/L (como PO4 3-)	0.01 mg/L	±0.04 mg/L ±4% de lectura	Adaptado del Método Ácido Ascorbico	610 nm	HI93713-01

www.hannacolombia.com

Parámetro	Rango	Resolución	Precisión (a 25°C)	Método	Longitud de Onda	Código del Reactivo
Fosfato, Rango Alto	0.0 a 30.0 mg/L (como PO4 3-)	0.1 mg/L	±1.0 mg/L ±4% de lectura	Adaptado de Standard Methods for the Examination of Water and Wastewater, 18th edition, Método Aminoácido	525 nm	HI93717-01
Sílice, Rango Bajo	0.00 a 2.00 mg/L (como SiO2)	0.01 mg/L	±0.03 mg/L ±3% de lectura	Adaptado de ASTM Manual of Water and Environmental Technology, D859, Método Azul de Heteropoli	610 nm	HI93705-01
Sílice, Rango Bajo	0 a 200 mg/L (como SiO2)	1 mg/L	±1 mg/L ±5% de lectura	Adaptado de USEPA Method 370.1 for drinking, surface and saline waters, domestic and industrial wastes and Standard Method 4500-SiO2	466 nm	HI96770-01
Zinc	0.00 a 3.00 mg/L (como Zn)	0.01 mg/L	±0.03 mg/L ±3% de lectura	Adaptado de Standard Methods for the Examination of Water and Wastewater, 18th edition, Método Zincon	575 nm	HI93731-01

Especificaciones Generales

Canales de entrada	1 entrada de electrodo de pH y 5 longitudes de onda del fotómetro
Electrodo de pH	Electrodo de pH digital (no incluido)
Tipo de registro	Entrada opcional de registro sobre demanda con nombre de usuario e identificación de muestra
Memoria de registro	1000 lecturas
Conectividad	Receptor de USB-A a unidad USB; microUSB-B para conectar la fuente de energía y el computador
GLP	Datos de calibración para el electrodo de pH conectado
Pantalla	LCD de 128 x 64 píxeles retroiluminado
Tipo/vida de la batería	Batería recargable de polímero de litio de 3.7 VDC/>500 mediciones fotométricas o 50 horas de medición de pH continua

Hanna Instruments SAS www.hannacolombia.com

Canales de entrada	1 entrada de electrodo de pH y 5 longitudes de onda del fotómetro			
Fuente de alimentación	Adaptador de corriente 5 VDC USB 2.0 con USB-A a cable de microUSB-B (incluido)			
Ambiente	0 a 50.0 °C (32 a 122.0 °F); 0 a 95% RH, sin condensación			
Dimensiones	206 x 177 x 97 mm (8.1 x 7.0 x 3.8")			
Peso	1.0 kg (2.2 libras)			
Fuente lumínica del fotómetro/colorímetro	5 LED con filtros de interferencia de banda estrecha de 420 nm, 466 nm, 525 nm, 575 nm y 610 nm			
Detector lumínico del fotómetro/colorímetro	Fotodetector de silicio			
Filtro de paso de banda ancha	8 nm			
Precisión del filtro de paso de banda ancha	±1 nm			
Tipo de cubeta	24.6 mm, redonda			
Número de métodos	128 máx.			
Información sobre pedidos	El HI83305 se suministra con cubetas y tapas de muestreo (4 unidades), paño para limpiar las cubetas, conector de cable USB a microUSB, adaptador de corriente y manual de instrucciones.			

Accesorios

No Especifica

Cómo pedir

HI83305 se suministra con cubetas y tapas de muestra (4 unidades), paño para limpiar cubetas, conector de cable USB a micro USB, adaptador de corriente y manual de instrucciones.

Ventajas

No Especifica

Video

No Especifica

^{*} Tenga en cuenta que los reactivos no están incluidos